Меню

На что влияет частота шины видеокарты



Шина памяти – оптимальное значение? Разрядность шины памяти видеокарты

Характеристики видеокарт. Что такое шина памяти видеоадаптера. На что влияет ширина шины видеокарты – 128bit, 256bit, 384bit, с какой разрядностью шины памяти выбрать видеокарту. Максим: — Доброго времени суток, Denker. Интересует шина памяти видеокарты .

Почитал Вашу переписку с «нуждающимися» и позавидовал Вашему терпению и самообладанию. Надеюсь, и меня вытерпите. Моему компьютеру, как и любому смертному, пришла пора уходить на покой. Менять комплектующие всё сразу не получается, начать хочу с видеокарты, под будущую покупку материнки с процессором и памятью (если БП потребуется). Три дня лажу по Яндекс Маркету, смотрю разные видеокарты, оцениваю характеристики и чем дальше, тем голова квадратнее.

Позвонил другу, посоветоваться с ним, шарит вроде в компьютерах, но толком ничего сказать не может. У него видеокарта 9600GT 512Mb шина памяти 256bit. Залез я на сайт Nvidia, сравнил характеристики его видеоадаптера с теми, что глядел на Яндексе и ужаснулся! Разрядность шины памяти у него 256bit, а у кучи видеокарт, которые сейчас в продаже, шина памяти как и у меня – 128bit!

А ведь у него видеокарта тоже, мягко говоря, не новая! Я-то думал, прогресс вперед идет, а получается что разрядность шины видеопамяти у многих новых видеокарт такие же, как и у моей 4-х летней? Это производитель нас дурит немного, получается? Повышая одни параметры, другие оставляет на прежнем уровне? Понятно, что есть и с 256-битной шиной памяти видеоадаптеры и с 320-битной. Но они и стоят подороже. Вот и сломал я голову уже. Что ж выбрать — шину памяти, частоту, или объём памяти может в 2048 mb?

Вот пример — видеокарта Sparkle GeForce GTX 550 Ti 900Mhz, разрядность шины памяти 192bit, стоит примерно 4000 рублей. MSI GeForce GTS 450 783Mhz, ZOTAC GeForce GTS 450 875Mhz при 128bit стоят примерно столько же. ASUS GeForce GTS 450 594Mhz немногим дешевле и тоже шина памяти 128bit.

В чем подвох? В производителе? А есть карта Leadtek GeForce 9800 GT 550Mhz, вообще разрядность шины видеопамяти на 256bit и тоже с 1Гб памяти, так может она лучше, хоть и древняя? Вот и хочу я узнать – имеет смысл выбор видеоадаптера по шине памяти, либо какой параметр при выборе видеокарты все-таки определяющий (кроме денег конечно), и какую видеокарту лучше купить примерно за 4000 рублей.

Тут всех интересует, не будет ли процессор «мешать» видеокарте, а я взять в толк не могу, как в описанных мной видеокартах 128bit шина памяти уживается с частотой под 900Mhz, если у 9800 GT при частоте 550 разрядность шины памяти 256bit? Прошу прощения за длиннющее письмо. Но вот давит меня жаба 6-7 тыс. за видеокарту отдавать, да и жена не поймет.

Домашний компьютер:
Материнка: GA-M56S-S3 socket AM2
Процессор: Athlon 64 x2 5200+
Видеокарта: GeForce 8600GTS 256Mb шина 128bit
Память – 2 GB DDR2 800
Винты – 2 шт. на 250 и 320Gb

Denker:

Серьезный вопрос, по этой теме, думаю, можно защищать диссертацию, НО. Назло инженерам компаний мы не будем залазить в дебри научного прогресса, а поищем ответ на поверхности. Для тех, кто использует шину как медицинский термин, поясню — что такое шина памяти видеокарты, а там уж глядишь выйдем на понимание термина разрядность шины памяти, с чем едят и сколько нужно 384bit, 256bit или 128bit хватит. Итак.

Шина памяти видеокарты – это магистраль, связывающая графический процессор и память видеокарт. Шиной памяти обеспечивается транспортировка данных (двухсторонний обмен) между GPU и памятью. Объем передаваемой информации за один такт называется пропускной способностью шины или разрядностью шины памяти видеокарты.

В общем, все предельно просто — чем шире обеспечивается канал шиной, тем больше информации для расчетов доступно графическому процессору, за единицу времени. НО. Это с одной стороны и эта информация о шинах памяти многих заводит в заблуждение, так как продавцы, пользуясь случаем продать старье, очень редко открывают вторую сторону медали.

А именно – для того чтоб полноценно использовать предоставленную разрядность шины памяти нужен достаточно мощный GPU, чтоб увеличенная шина видеокарты использовалась на полную, а не являлась ценовым довеском. Это же касается и объема видеопамяти, избыточная память важна для CrossFireX и SLI систем.

У современных видеокарт шина памяти является следствием борьбы инженеров с тремя составляющими – мощность GPU + быстродействие видеопамяти + ценовое позиционирование графического ускорителя. Другими словами — разрядность шины памяти именно такая, какая нужна для оптимальной цены и производительности видеокарт.

Используя ваш пример с видеокартами — GeForce GTS 450 шина памяти 128bit и GeForce GTX 550 Ti шина видеокарты 192bit – расширим представление, добавив количество вычислительных блоков GPU и значения номинальных частот адаптеров. GTS450 = 192/32/16 — 783/1566/3600MHz и GTX550Ti = 192/32/24 — 900/1800/4100MHz, как вы видите 550Ti чуть мощней, чуть быстрей и обеспечивается большей разрядностью канала шины памяти. Дальше больше и шире, как следствие видеокарту GeForce 450, точнее ее процессор, можно считать пороговым значением для 128bit шины памяти.

К вопросу о производителе – маркетологи внесли немалый вклад в раздутие понятия разрядности шины. И порой доходило до смешного – выставляли шину памяти чуть ли не основной характеристикой видеокарты. Я же вам говорю следующее – не обязательно что-то делать больше в два раза, чтоб оно работало эффективней – можно ведь усовершенствовать технологию. А также, говорю — нет шине памяти 256bit GeForce 9800GT – видеокарта устарела.

Читайте также:  Как удалить старые драйвера для видеокарты nvidia

И мой совет потребителю — покупая видеокарту по цене ниже 100$, обязательно уточняйте разрядность шины памяти, производитель может срезать этот параметр для удешевления продукции. Покупая видеоадаптер дороже 100$, прежде всего, смотрите на тесты производительности референсного образца видеокарты (номинал от Nvidia или AMD ATI). Это важнее – сравнение видеокарт тесты 2014. Шина памяти будет равна оптимальному значению, случаи искусственного урезания сведены к нулю.

Основной упор в выборе видеокарты делайте на соотношение цены/производительности, учитывайте частоту, объем памяти по отношению к номиналу, возможность разгона либо заводской разгон. Разрядность шины памяти не оставляйте без внимания (мало ли что), но и не предавайте особого значения. И главное не забывайте покупку видео карты увязывать с покупкой процессора. Что важнее процессор или видеокарта.

При копировании материала ссылка на сайт обязательна!

С наилучшими $ пожеланиями
Denker.

Источник

Руководство покупателя игровой видеокарты


Последнее обновление от 28.09.2012


Основные характеристики видеокарт

Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим лишь самые важные из них.

Тактовая частота видеочипа

Рабочая частота GPU обычно измеряется в мегагерцах, т. е. миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа — чем она выше, тем больший объем работы GPU может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видеочипа, установленного на плате Radeon HD 6670 равна 840 МГц, а точно такой же чип в модели Radeon HD 6570 работает на частоте в 650 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа определяет производительность, на его скорость сильно влияет и сама графическая архитектура: устройство и количество исполнительных блоков, их характеристики и т. п.

В некоторых случаях тактовая частота отдельных блоков GPU отличается от частоты работы остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет. Такими GPU комплектуется большинство видеокарт GeForce от NVIDIA. Из свежих примеров приведём видеочип в модели GTX 580, большая часть которого работает на частоте 772 МГц, а универсальные вычислительные блоки чипа имеют повышенную вдвое частоту — 1544 МГц.

Скорость заполнения (филлрейт)

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная — это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

Например, пиковый пиксельный филлрейт у GeForce GTX 560 Ti равен 822 (частота чипа) × 32 (количество блоков ROP) = 26304 мегапикселей в секунду, а текстурный — 822 × 64 (кол-во блоков текстурирования) = 52608 мегатекселей/с. Упрощённо дело обстоит так — чем больше первое число — тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе — тем быстрее производится выборка текстурных данных.

Хотя важность «чистого» филлрейта в последнее время заметно снизилась, уступив скорости вычислений, эти параметры всё ещё остаются весьма важными, особенно для игр с несложной геометрией и сравнительно простыми пиксельными и вершинными вычислениями. Так что оба параметра остаются важными и для современных игр, но они должны быть сбалансированы. Поэтому количество блоков ROP в современных видеочипах обычно меньше количества текстурных блоков.

Количество вычислительных (шейдерных) блоков или процессоров

Пожалуй, сейчас эти блоки — главные части видеочипа. Они выполняют специальные программы, известные как шейдеры. Причём, если раньше пиксельные шейдеры выполняли блоки пиксельных шейдеров, а вершинные — вершинные блоки, то с некоторого времени графические архитектуры были унифицированы, и эти универсальные вычислительные блоки стали заниматься различными расчётами: вершинными, пиксельными, геометрическими и даже универсальными вычислениями.

Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI (впоследствии купленной AMD). А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились ещё в плате NVIDIA GeForce 8800. И с тех пор все новые видеочипы основаны на унифицированной архитектуре, которая имеет универсальный код для разных шейдерных программ (вершинных, пиксельных, геометрических и пр.), и соответствующие унифицированные процессоры могут выполнить любые программы.

По числу вычислительных блоков и их частоте можно сравнивать математическую производительность разных видеокарт. Большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров, поэтому количество этих блоков весьма важно. К примеру, если одна модель видеокарты основана на GPU с 384 вычислительными процессорами в его составе, а другая из той же линейки имеет GPU с 192 вычислительными блоками, то при равной частоте вторая будет вдвое медленнее обрабатывать любой тип шейдеров, и в целом будет настолько же производительнее.

Хотя, исключительно на основании одного лишь количества вычислительных блоков делать однозначные выводы о производительности нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Только по этим цифрам можно сравнивать чипы только в пределах одной линейки одного производителя: AMD или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх или приложениях.

Блоки текстурирования (TMU)

Эти блоки GPU работают совместно с вычислительными процессорами, ими осуществляется выборка и фильтрация текстурных и прочих данных, необходимых для построения сцены и универсальных вычислений. Число текстурных блоков в видеочипе определяет текстурную производительность — то есть скорость выборки текселей из текстур.

Хотя в последнее время больший упор делается на математические расчеты, а часть текстур заменяется процедурными, нагрузка на блоки TMU и сейчас довольно велика, так как кроме основных текстур, выборки необходимо делать и из карт нормалей и смещений, а также внеэкранных буферов рендеринга render target.

С учётом упора многих игр в том числе и в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность также являются одними из важнейших параметров для видеочипов. Особенное влияние этот параметр оказывает на скорость рендеринга картинки при использовании анизотропной фильтрации, требующие дополнительных текстурных выборок, а также при сложных алгоритмах мягких теней и новомодных алгоритмах вроде Screen Space Ambient Occlusion.

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это — одна из основных характеристик видеокарт всех времён. И хотя в последнее время её значение также несколько снизилось, всё ещё попадаются случаи, когда производительность приложений зависит от скорости и количества блоков ROP. Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

Ещё раз отметим, что современные видеочипы нельзя оценивать только числом разнообразных блоков и их частотой. Каждая серия GPU использует новую архитектуру, в которой исполнительные блоки сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Так, блоки ROP компании AMD в некоторых решениях могут выполнять за такт больше работы, чем блоки в решениях NVIDIA, и наоборот. То же самое касается и способностей текстурных блоков TMU — они разные в разных поколениях GPU разных производителей, и это нужно учитывать при сравнении.

Вплоть до последнего времени, количество блоков обработки геометрии было не особенно важным. Одного блока на GPU хватало для большинства задач, так как геометрия в играх была довольно простой и основным упором производительности были математические вычисления. Важность параллельной обработки геометрии и количества соответствующих блоков резко выросли при появлении в DirectX 11 поддержки тесселяции геометрии. Компания NVIDIA первой распараллелила обработку геометрических данных, когда в её чипах семейства GF1xx появилось по несколько соответстующих блоков. Затем, похожее решение выпустила и AMD (только в топовых решениях линейки Radeon HD 6700 на базе чипов Cayman).

В рамках этого материала мы не будем вдаваться в подробности, их можно прочитать в базовых материалах нашего сайта, посвященных DirectX 11-совместимым графическим процессорам. В данном случае для нас важно то, что количество блоков обработки геометрии очень сильно влияет на общую производительность в самых новых играх, использующих тесселяцию, вроде Metro 2033, HAWX 2 и Crysis 2 (с последними патчами). И при выборе современной игровой видеокарты очень важно обращать внимание и на геометрическую производительность.

Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, данных буферов и т. п. Казалось бы, что чем её больше — тем всегда лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти — это наиболее распространенная ошибка! Значение объёма видеопамяти неопытные пользователи переоценивают чаще всего, до сих пор используя именно его для сравнения разных моделей видеокарт. Оно и понятно — этот параметр указывается в списках характеристик готовых систем одним из первых, да и на коробках видеокарт его пишут крупным шрифтом. Поэтому неискушённому покупателю кажется, что раз памяти в два раза больше, то и скорость у такого решения должна быть в два раза выше. Реальность же от этого мифа отличается тем, что память бывает разных типов и характеристик, а рост производительности растёт лишь до определенного объёма, а после его достижения попросту останавливается.

Так, в каждой игре и при определённых настройках и игровых сценах есть некий объём видеопамяти, которого хватит для всех данных. И хоть ты 4 ГБ видеопамяти туда поставь — у неё не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки, о которых речь шла выше, а памяти просто будет достаточно. Именно поэтому во многих случаях видеокарта с 1,5 ГБ видеопамяти работает с той же скоростью, что и карта с 3 ГБ (при прочих равных условиях).

Ситуации, когда больший объём памяти приводит к видимому увеличению производительности, существуют — это очень требовательные игры, особенно в сверхвысоких разрешениях и при максимальных настройках качества. Но такие случаи встречаются не всегда и объём памяти учитывать нужно, не забывая о том, что выше определённого объема производительность просто уже не вырастет. Есть у чипов памяти и более важные параметры, такие как ширина шины памяти и её рабочая частота. Эта тема настолько обширна, что подробнее о выборе объёма видеопамяти мы ещё остановимся в шестой части нашего материала.

Ширина шины памяти

Ширина шины памяти является важнейшей характеристикой, влияющей на пропускную способность памяти (ПСП). Большая ширина позволяет передавать большее количество информации из видеопамяти в GPU и обратно в единицу времени, что положительно влияет на производительность в большинстве случаев. Теоретически, по 256-битной шине можно передать в два раза больше данных за такт, чем по 128-битной. На практике разница в скорости рендеринга хоть и не достигает двух раз, но весьма близка к этому во многих случаях с упором в пропускную способность видеопамяти.

Современные игровые видеокарты используют разную ширину шины: от 64 до 384 бит (ранее были чипы и с 512-битной шиной), в зависимости от ценового диапазона и времени выпуска конкретной модели GPU. Для самых дешёвых видеокарт уровня low-end чаще всего используется 64 и реже 128 бит, для среднего уровня от 128 до 256 бит, ну а видеокарты из верхнего ценового диапазона используют шины от 256 до 384 бит шириной. Ширина шины уже не может расти чисто из-за физических ограничений — размер кристалла GPU недостаточен для разводки более чем 512-битной шины, и это обходится слишком дорого. Поэтому наращивание ПСП сейчас осуществляется при помощи использования новых типов памяти (см. далее).

Ещё одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А повышение ПСП часто напрямую влияет на производительность видеокарты в 3D-приложениях. Частота шины памяти на современных видеокартах бывает от 533(1066, с учётом удвоения) МГц до 1375(5500, с учётом учетверения) МГц, то есть, может отличаться более чем в пять раз! И так как ПСП зависит и от частоты памяти, и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 800(3200) МГц, будет иметь бо́льшую пропускную способность по сравнению с памятью, работающей на 1000(4000) МГц со 128-битной шиной.

Особенное внимание на параметры ширины шины памяти, её типа и частоты работы следует уделять при покупке сравнительно недорогих видеокарт, на многие из которых ставят лишь 128-битные или даже 64-битные интерфейсы, что крайне негативно сказывается на их производительности. Вообще, покупка видеокарты с использованием 64-битной шины видеопамяти для игрового ПК нами не рекомендуется вовсе. Желательно отдать предпочтение хотя бы среднему уровню минимум со 128- или 192-битной шиной.

На современные видеокарты устанавливается сразу несколько различных типов памяти. Старую SDR-память с одинарной скоростью передачи уже нигде не встретишь, но и современные типы памяти DDR и GDDR имеют значительно отличающиеся характеристики. Различные типы DDR и GDDR позволяют передавать в два или четыре раза большее количество данных на той же тактовой частоте за единицу времени, и поэтому цифру рабочей частоты зачастую указывают удвоенной или учетверённой, умножая на 2 или 4. Так, если для DDR-памяти указана частота 1400 МГц, то эта память работает на физической частоте в 700 МГц, но указывают так называемую «эффективную» частоту, то есть ту, на которой должна работать SDR-память, чтобы обеспечить такую же пропускную способность. То же самое с GDDR5, но частоту тут даже учетверяют.

Основное преимущество новых типов памяти заключается в возможности работы на больших тактовых частотах, а соответственно — в увеличении пропускной способности по сравнению с предыдущими технологиями. Это достигается за счет увеличенных задержек, которые, впрочем, не так важны для видеокарт. Первой платой, использующей память DDR2, стала NVIDIA GeForce FX 5800 Ultra. С тех пор технологии графической памяти значительно продвинулись, был разработан стандарт GDDR3, который близок к спецификациям DDR2, с некоторыми изменениями специально для видеокарт.

GDDR3 — это специально предназначенная для видеокарт память, с теми же технологиями, что и DDR2, но с улучшенными характеристиками потребления и тепловыделения, что позволило создать микросхемы, работающие на более высоких тактовых частотах. Несмотря на то, что стандарт был разработан в компании ATI, первой видеокартой, её использующей, стала вторая модификация NVIDIA GeForce FX 5700 Ultra, а следующей стала GeForce 6800 Ultra.

GDDR4 — это дальнейшее развитие «графической» памяти, работающее почти в два раза быстрее, чем GDDR3. Основными отличиями GDDR4 от GDDR3, существенными для пользователей, являются в очередной раз повышенные рабочие частоты и сниженное энергопотребление. Технически, память GDDR4 не сильно отличается от GDDR3, это дальнейшее развитие тех же идей. Первыми видеокартами с чипами GDDR4 на борту стали ATI Radeon X1950 XTX, а у компании NVIDIA продукты на базе этого типа памяти не выходили вовсе. Преимущества новых микросхем памяти перед GDDR3 в том, что энергопотребление модулей может быть примерно на треть ниже. Это достигается за счет более низкого номинального напряжения для GDDR4.

Впрочем, GDDR4 не получила широкого распространения даже в решениях AMD. Начиная с GPU семейства RV7x0, контроллерами памяти видеокарт поддерживается новый тип памяти GDDR5, работающий на эффективной учетверённой частоте до 5,5 ГГц и выше (теоретически возможны частоты до 7 ГГц), что даёт пропускную способность до 176 ГБ/с с применением 256-битного интерфейса. Если для повышения ПСП у памяти GDDR3/GDDR4 приходилось использовать 512-битную шину, то переход на использование GDDR5 позволил увеличить производительность вдвое при меньших размерах кристаллов и меньшем потреблении энергии.

Видеопамять самых современных типов — это GDDR3 и GDDR5, она отличается от DDR некоторыми деталями и также работает с удвоенной/учетверённой передачей данных. В этих типах памяти применяются некоторые специальные технологии, позволяющие поднять частоту работы. Так, память GDDR2 обычно работает на более высоких частотах по сравнению с DDR, GDDR3 — на еще более высоких, а GDDR5 обеспечивает максимальную частоту и пропускную способность на данный момент. Но на недорогие модели до сих пор ставят «неграфическую» память DDR3 со значительно меньшей частотой, поэтому нужно выбирать видеокарту внимательнее.

Источник