Меню

Как определить количество потоковых процессоров на видеокарте



Рецепт быстродействия
Изучаем структуру видеокарты

Сегодня в продаже можно встретить множество самых разнообразных моделей видеокарт. Компании NVIDIA и AMD регулярно дают жизнь новым графическим платам, и уследить за всеми новинками не так уж просто.

Поэтому важно уметь сравнивать видеоадаптеры, основываясь на их технических характеристиках.

Графический чип

Для начала рассмотрим видеокарты, поддерживающие API DirectX 10. В этот список попадают все модели семейств GeForce 8000 и Radeon HD 2000, а также более поздние решения. Графические ядра этих видеоадаптеров обладают четырьмя ключевыми параметрами.

Во-первых, очень важную роль играет количество универсальных шейдерных (потоковых) процессоров — именно этот параметр определяет, как быстро будут обрабатываться шейдеры, коими перегружены сегодняшние игры.

Также стоит обратить внимание на количество текстурных блоков (TMU) и блоков растровых операций (ROP). Первые отвечают за выборку и фильтрацию текстур, а вторые занимаются смешением цветов и записью пиксельных данных в память. В «тяжелых» режимах работы с качественной фильтрацией текстур и многократным сглаживанием производительность может упереться в малое количество блоков TMU и ROP.

Наконец, очень важна частота работы графического ядра: чем она выше, тем больше операций сможет совершить видеокарта за единицу времени. Повышенной частотой ядра зачастую можно компенсировать недостаток исполнительных блоков графического процессора.

У видеокарт, лишенных поддержки DirectX 10, универсальные шейдерные процессоры отсутствуют. Вместо них в ядре располагаются вершинные и пиксельные процессоры. Как несложно понять из названия, первые занимаются обработкой вершинных шейдеров, а вторые — пиксельных. На сегодняшний день подобные видеокарты встречаются в продаже крайне редко, и приобретать их нет смысла.

Это важно: из-за существенных различий в архитектуре сравнивать между собой характеристики графических ядер разных производителей некорректно. Например, у Radeon HD 4870 потоковых процессоров аж 800 штук, но по производительности она уступает GeForce GTX 285, у которой их всего 240.

В последнее время все большую популярность обретают двучиповые модели видеокарт — самые быстрые представители линеек GeForce и Radeon построены как раз по такой схеме. В этих адаптерах дублируется не только видеочип, но и подсистема памяти, а взаимодействие между ядрами осуществляется посредством технологий SLI и CrossFire.

Подсистема памяти

Главной характеристикой графической памяти традиционно считается объем, однако неопытные пользователи часто переоценивают значение этого параметра. Недостаток памяти ведет к существенному падению производительности, а вот ее избыток не дает никакого прироста быстродействия. По этой причине покупать слабые видеокарты с гигантскими объемами памяти нет смысла — 512 Мб сегодня хватает для любой игры, а гигабайтом смогут грамотно распорядиться только флагманские модели.

Помимо количества памяти очень важна и ее пропускная способность. Она прямо пропорциональна двум параметрам: ширине шины и частоте памяти. Ширина шины показывает, какой объем информации видеочип может получить или передать за один рабочий такт, а частота определяет, сколько таких тактов будет совершено на одну секунду. Таким образом, память, сообщающая с графическим процессором по 128-битной шине и работающая на частоте 1800 МГц, по пропускной способности уступает 1000-Мгц аналогу, который использует 256-битную шину.

Это важно: последнее время NVIDIA делает ставку на производительную шину, а AMD, напротив, старается вовсю использовать преимущества быстрой памяти GDDR5. Будьте внимательны при сравнении.

Низкая пропускная способность памяти фактически «перекрывает кислород» графическому чипу, из-за чего последний не может работать в полную силу. Нередко модели видеокарт нижнего ценового сегмента в угоду стоимости наделяют дешевой и медленной памятью, частота которой порою существенно уступает эталонной. Брать подобные творения мы настоятельно не рекомендуем.

Напоследок заметим, что у видеокарт есть ряд характеристик, которые не влияют на производительность, но тем не менее также весьма важны. Скажем, эффективность системы охлаждения напрямую сказывается на стабильности и долговечности графического адаптера, а ее уровень шума позволяет дать оценку такой абстрактной величине, как степень назойливости для пользователя. Другой пример — потребляемая мощность. С помощью этого параметра можно прикинуть, стоит ли тому или иному блоку питания взаимодействовать с конкретным видеоадаптером. Важную роль играет и поддержка энергосберегающих функций, которые позволяют экономить на счетах за электроэнергию и не дают видеокарте напрягаться впустую. Наконец, особенности работы в мультипроцессорных режимах у разных видеоадаптеров могут отличаться — например, 3-way SLI поддерживают далеко не все видеокарты GeForce.

Источник

Руководство покупателя игровой видеокарты


Последнее обновление от 28.09.2012


Основные характеристики видеокарт

Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим лишь самые важные из них.

Тактовая частота видеочипа

Рабочая частота GPU обычно измеряется в мегагерцах, т. е. миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа — чем она выше, тем больший объем работы GPU может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видеочипа, установленного на плате Radeon HD 6670 равна 840 МГц, а точно такой же чип в модели Radeon HD 6570 работает на частоте в 650 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа определяет производительность, на его скорость сильно влияет и сама графическая архитектура: устройство и количество исполнительных блоков, их характеристики и т. п.

Читайте также:  Дрова на видеокарту делл инспирон

В некоторых случаях тактовая частота отдельных блоков GPU отличается от частоты работы остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет. Такими GPU комплектуется большинство видеокарт GeForce от NVIDIA. Из свежих примеров приведём видеочип в модели GTX 580, большая часть которого работает на частоте 772 МГц, а универсальные вычислительные блоки чипа имеют повышенную вдвое частоту — 1544 МГц.

Скорость заполнения (филлрейт)

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная — это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

Например, пиковый пиксельный филлрейт у GeForce GTX 560 Ti равен 822 (частота чипа) × 32 (количество блоков ROP) = 26304 мегапикселей в секунду, а текстурный — 822 × 64 (кол-во блоков текстурирования) = 52608 мегатекселей/с. Упрощённо дело обстоит так — чем больше первое число — тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе — тем быстрее производится выборка текстурных данных.

Хотя важность «чистого» филлрейта в последнее время заметно снизилась, уступив скорости вычислений, эти параметры всё ещё остаются весьма важными, особенно для игр с несложной геометрией и сравнительно простыми пиксельными и вершинными вычислениями. Так что оба параметра остаются важными и для современных игр, но они должны быть сбалансированы. Поэтому количество блоков ROP в современных видеочипах обычно меньше количества текстурных блоков.

Количество вычислительных (шейдерных) блоков или процессоров

Пожалуй, сейчас эти блоки — главные части видеочипа. Они выполняют специальные программы, известные как шейдеры. Причём, если раньше пиксельные шейдеры выполняли блоки пиксельных шейдеров, а вершинные — вершинные блоки, то с некоторого времени графические архитектуры были унифицированы, и эти универсальные вычислительные блоки стали заниматься различными расчётами: вершинными, пиксельными, геометрическими и даже универсальными вычислениями.

Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI (впоследствии купленной AMD). А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились ещё в плате NVIDIA GeForce 8800. И с тех пор все новые видеочипы основаны на унифицированной архитектуре, которая имеет универсальный код для разных шейдерных программ (вершинных, пиксельных, геометрических и пр.), и соответствующие унифицированные процессоры могут выполнить любые программы.

По числу вычислительных блоков и их частоте можно сравнивать математическую производительность разных видеокарт. Большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров, поэтому количество этих блоков весьма важно. К примеру, если одна модель видеокарты основана на GPU с 384 вычислительными процессорами в его составе, а другая из той же линейки имеет GPU с 192 вычислительными блоками, то при равной частоте вторая будет вдвое медленнее обрабатывать любой тип шейдеров, и в целом будет настолько же производительнее.

Хотя, исключительно на основании одного лишь количества вычислительных блоков делать однозначные выводы о производительности нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Только по этим цифрам можно сравнивать чипы только в пределах одной линейки одного производителя: AMD или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх или приложениях.

Блоки текстурирования (TMU)

Эти блоки GPU работают совместно с вычислительными процессорами, ими осуществляется выборка и фильтрация текстурных и прочих данных, необходимых для построения сцены и универсальных вычислений. Число текстурных блоков в видеочипе определяет текстурную производительность — то есть скорость выборки текселей из текстур.

Хотя в последнее время больший упор делается на математические расчеты, а часть текстур заменяется процедурными, нагрузка на блоки TMU и сейчас довольно велика, так как кроме основных текстур, выборки необходимо делать и из карт нормалей и смещений, а также внеэкранных буферов рендеринга render target.

С учётом упора многих игр в том числе и в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность также являются одними из важнейших параметров для видеочипов. Особенное влияние этот параметр оказывает на скорость рендеринга картинки при использовании анизотропной фильтрации, требующие дополнительных текстурных выборок, а также при сложных алгоритмах мягких теней и новомодных алгоритмах вроде Screen Space Ambient Occlusion.

Читайте также:  Последнее поколение процессоров видеокарт

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это — одна из основных характеристик видеокарт всех времён. И хотя в последнее время её значение также несколько снизилось, всё ещё попадаются случаи, когда производительность приложений зависит от скорости и количества блоков ROP. Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

Ещё раз отметим, что современные видеочипы нельзя оценивать только числом разнообразных блоков и их частотой. Каждая серия GPU использует новую архитектуру, в которой исполнительные блоки сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Так, блоки ROP компании AMD в некоторых решениях могут выполнять за такт больше работы, чем блоки в решениях NVIDIA, и наоборот. То же самое касается и способностей текстурных блоков TMU — они разные в разных поколениях GPU разных производителей, и это нужно учитывать при сравнении.

Вплоть до последнего времени, количество блоков обработки геометрии было не особенно важным. Одного блока на GPU хватало для большинства задач, так как геометрия в играх была довольно простой и основным упором производительности были математические вычисления. Важность параллельной обработки геометрии и количества соответствующих блоков резко выросли при появлении в DirectX 11 поддержки тесселяции геометрии. Компания NVIDIA первой распараллелила обработку геометрических данных, когда в её чипах семейства GF1xx появилось по несколько соответстующих блоков. Затем, похожее решение выпустила и AMD (только в топовых решениях линейки Radeon HD 6700 на базе чипов Cayman).

В рамках этого материала мы не будем вдаваться в подробности, их можно прочитать в базовых материалах нашего сайта, посвященных DirectX 11-совместимым графическим процессорам. В данном случае для нас важно то, что количество блоков обработки геометрии очень сильно влияет на общую производительность в самых новых играх, использующих тесселяцию, вроде Metro 2033, HAWX 2 и Crysis 2 (с последними патчами). И при выборе современной игровой видеокарты очень важно обращать внимание и на геометрическую производительность.

Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, данных буферов и т. п. Казалось бы, что чем её больше — тем всегда лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти — это наиболее распространенная ошибка! Значение объёма видеопамяти неопытные пользователи переоценивают чаще всего, до сих пор используя именно его для сравнения разных моделей видеокарт. Оно и понятно — этот параметр указывается в списках характеристик готовых систем одним из первых, да и на коробках видеокарт его пишут крупным шрифтом. Поэтому неискушённому покупателю кажется, что раз памяти в два раза больше, то и скорость у такого решения должна быть в два раза выше. Реальность же от этого мифа отличается тем, что память бывает разных типов и характеристик, а рост производительности растёт лишь до определенного объёма, а после его достижения попросту останавливается.

Так, в каждой игре и при определённых настройках и игровых сценах есть некий объём видеопамяти, которого хватит для всех данных. И хоть ты 4 ГБ видеопамяти туда поставь — у неё не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки, о которых речь шла выше, а памяти просто будет достаточно. Именно поэтому во многих случаях видеокарта с 1,5 ГБ видеопамяти работает с той же скоростью, что и карта с 3 ГБ (при прочих равных условиях).

Ситуации, когда больший объём памяти приводит к видимому увеличению производительности, существуют — это очень требовательные игры, особенно в сверхвысоких разрешениях и при максимальных настройках качества. Но такие случаи встречаются не всегда и объём памяти учитывать нужно, не забывая о том, что выше определённого объема производительность просто уже не вырастет. Есть у чипов памяти и более важные параметры, такие как ширина шины памяти и её рабочая частота. Эта тема настолько обширна, что подробнее о выборе объёма видеопамяти мы ещё остановимся в шестой части нашего материала.

Ширина шины памяти

Ширина шины памяти является важнейшей характеристикой, влияющей на пропускную способность памяти (ПСП). Большая ширина позволяет передавать большее количество информации из видеопамяти в GPU и обратно в единицу времени, что положительно влияет на производительность в большинстве случаев. Теоретически, по 256-битной шине можно передать в два раза больше данных за такт, чем по 128-битной. На практике разница в скорости рендеринга хоть и не достигает двух раз, но весьма близка к этому во многих случаях с упором в пропускную способность видеопамяти.

Современные игровые видеокарты используют разную ширину шины: от 64 до 384 бит (ранее были чипы и с 512-битной шиной), в зависимости от ценового диапазона и времени выпуска конкретной модели GPU. Для самых дешёвых видеокарт уровня low-end чаще всего используется 64 и реже 128 бит, для среднего уровня от 128 до 256 бит, ну а видеокарты из верхнего ценового диапазона используют шины от 256 до 384 бит шириной. Ширина шины уже не может расти чисто из-за физических ограничений — размер кристалла GPU недостаточен для разводки более чем 512-битной шины, и это обходится слишком дорого. Поэтому наращивание ПСП сейчас осуществляется при помощи использования новых типов памяти (см. далее).

Читайте также:  Как узнать как называется моя видеокарта

Ещё одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А повышение ПСП часто напрямую влияет на производительность видеокарты в 3D-приложениях. Частота шины памяти на современных видеокартах бывает от 533(1066, с учётом удвоения) МГц до 1375(5500, с учётом учетверения) МГц, то есть, может отличаться более чем в пять раз! И так как ПСП зависит и от частоты памяти, и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 800(3200) МГц, будет иметь бо́льшую пропускную способность по сравнению с памятью, работающей на 1000(4000) МГц со 128-битной шиной.

Особенное внимание на параметры ширины шины памяти, её типа и частоты работы следует уделять при покупке сравнительно недорогих видеокарт, на многие из которых ставят лишь 128-битные или даже 64-битные интерфейсы, что крайне негативно сказывается на их производительности. Вообще, покупка видеокарты с использованием 64-битной шины видеопамяти для игрового ПК нами не рекомендуется вовсе. Желательно отдать предпочтение хотя бы среднему уровню минимум со 128- или 192-битной шиной.

На современные видеокарты устанавливается сразу несколько различных типов памяти. Старую SDR-память с одинарной скоростью передачи уже нигде не встретишь, но и современные типы памяти DDR и GDDR имеют значительно отличающиеся характеристики. Различные типы DDR и GDDR позволяют передавать в два или четыре раза большее количество данных на той же тактовой частоте за единицу времени, и поэтому цифру рабочей частоты зачастую указывают удвоенной или учетверённой, умножая на 2 или 4. Так, если для DDR-памяти указана частота 1400 МГц, то эта память работает на физической частоте в 700 МГц, но указывают так называемую «эффективную» частоту, то есть ту, на которой должна работать SDR-память, чтобы обеспечить такую же пропускную способность. То же самое с GDDR5, но частоту тут даже учетверяют.

Основное преимущество новых типов памяти заключается в возможности работы на больших тактовых частотах, а соответственно — в увеличении пропускной способности по сравнению с предыдущими технологиями. Это достигается за счет увеличенных задержек, которые, впрочем, не так важны для видеокарт. Первой платой, использующей память DDR2, стала NVIDIA GeForce FX 5800 Ultra. С тех пор технологии графической памяти значительно продвинулись, был разработан стандарт GDDR3, который близок к спецификациям DDR2, с некоторыми изменениями специально для видеокарт.

GDDR3 — это специально предназначенная для видеокарт память, с теми же технологиями, что и DDR2, но с улучшенными характеристиками потребления и тепловыделения, что позволило создать микросхемы, работающие на более высоких тактовых частотах. Несмотря на то, что стандарт был разработан в компании ATI, первой видеокартой, её использующей, стала вторая модификация NVIDIA GeForce FX 5700 Ultra, а следующей стала GeForce 6800 Ultra.

GDDR4 — это дальнейшее развитие «графической» памяти, работающее почти в два раза быстрее, чем GDDR3. Основными отличиями GDDR4 от GDDR3, существенными для пользователей, являются в очередной раз повышенные рабочие частоты и сниженное энергопотребление. Технически, память GDDR4 не сильно отличается от GDDR3, это дальнейшее развитие тех же идей. Первыми видеокартами с чипами GDDR4 на борту стали ATI Radeon X1950 XTX, а у компании NVIDIA продукты на базе этого типа памяти не выходили вовсе. Преимущества новых микросхем памяти перед GDDR3 в том, что энергопотребление модулей может быть примерно на треть ниже. Это достигается за счет более низкого номинального напряжения для GDDR4.

Впрочем, GDDR4 не получила широкого распространения даже в решениях AMD. Начиная с GPU семейства RV7x0, контроллерами памяти видеокарт поддерживается новый тип памяти GDDR5, работающий на эффективной учетверённой частоте до 5,5 ГГц и выше (теоретически возможны частоты до 7 ГГц), что даёт пропускную способность до 176 ГБ/с с применением 256-битного интерфейса. Если для повышения ПСП у памяти GDDR3/GDDR4 приходилось использовать 512-битную шину, то переход на использование GDDR5 позволил увеличить производительность вдвое при меньших размерах кристаллов и меньшем потреблении энергии.

Видеопамять самых современных типов — это GDDR3 и GDDR5, она отличается от DDR некоторыми деталями и также работает с удвоенной/учетверённой передачей данных. В этих типах памяти применяются некоторые специальные технологии, позволяющие поднять частоту работы. Так, память GDDR2 обычно работает на более высоких частотах по сравнению с DDR, GDDR3 — на еще более высоких, а GDDR5 обеспечивает максимальную частоту и пропускную способность на данный момент. Но на недорогие модели до сих пор ставят «неграфическую» память DDR3 со значительно меньшей частотой, поэтому нужно выбирать видеокарту внимательнее.

Источник